Additively manufactured bioceramic scaffolds based on triply periodic minimal surfaces for bone regeneration

Hong Zhu,Jinsi Wang, Shengfa Wang, Yue Yang, Meiyi Chen, Qifei Luan,Xiaochuan Liu, Ziheng Lin, Jiaqi Hu, Kenny Man,Jingying Zhang

JOURNAL OF TISSUE ENGINEERING(2024)

引用 0|浏览0
暂无评分
摘要
The study focused on the effects of a triply periodic minimal surface (TPMS) scaffolds, varying in porosity, on the repair of mandibular defects in New Zealand white rabbits. Four TPMS configurations (40%, 50%, 60%, and 70% porosity) were fabricated with beta-tricalcium phosphate bioceramic via additive manufacturing. Scaffold properties were assessed through scanning electron microscopy and mechanical testing. For proliferation and adhesion assays, mouse bone marrow stem cells (BMSCs) were cultured on these scaffolds. In vivo, the scaffolds were implanted into rabbit mandibular defects for 2 months. Histological staining evaluated osteogenic potential. Moreover, RNA-sequencing analysis and RT-qPCR revealed the significant involvement of angiogenesis-related factors and Hippo signaling pathway in influencing BMSCs behavior. Notably, the 70% porosity TPMS scaffold exhibited optimal compressive strength, superior cell proliferation, adhesion, and significantly enhanced osteogenesis and angiogenesis. These findings underscore the substantial potential of 70% porosity TPMS scaffolds in effectively promoting bone regeneration within mandibular defects.
更多
查看译文
关键词
TPMS bone scaffold,osteogenesis,mandibular defect,bone regeneration,3D printer/additive manufacture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要