Nash Equilibrium Seeking for Noncooperative Duopoly Games via Event-Triggered Control

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
This paper proposes a novel approach for locally stable convergence to Nash equilibrium in duopoly noncooperative games based on a distributed event-triggered control scheme. The proposed approach employs extremum seeking, with sinusoidal perturbation signals applied to estimate the Gradient (first derivative) of unknown quadratic payoff functions. This is the first instance of noncooperative games being tackled in a model-free fashion integrated with the event-triggered methodology. Each player evaluates independently the deviation between the corresponding current state variable and its last broadcasted value to update the player action, while they preserve control performance under limited bandwidth of the actuation paths and still guarantee stability for the closed-loop dynamics. In particular, the stability analysis is carried out using time-scaling technique, Lyapunov's direct method and averaging theory for discontinuous systems. We quantify the size of the ultimate small residual sets around the Nash equilibrium and illustrate the theoretical results numerically on an example.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要