Ferroptosis contributes to airway epithelial E-cadherin disruption in a mixed granulocytic asthma mouse model

Sudan Gan,Liqin Lin, Zemin Chen,Hailing Zhang,Haixiong Tang, Changyun Yang,Jing Li,Shiyue Li,Lihong Yao

Experimental Cell Research(2024)

引用 0|浏览5
暂无评分
摘要
Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.
更多
查看译文
关键词
Mixed granulocyte asthma,Airway epithelial cells,Ferroptosis,E-cadherin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要