Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis

Chinese Chemical Letters(2024)

引用 0|浏览0
暂无评分
摘要
Carbon nitride, a typical low-dimensional conjugated polymer photocatalyst, features a high exciton binding energy due to the weak dielectric screening and the strong Coulombic attraction of photogenerated electrons and holes. The reduction of the exciton binding energy of carbon nitride to promote the conversion from excitons into free carriers is the first priority for the improvement of charge-transfer-dependent photocatalytic reaction activity. In this paper, by introducing a variety of polar metal cations to carbon nitride, it is demonstrated that the charge distribution of the heptazine ring can be improved by ion polarization, which effectively promotes the dissociation of excitons into electrons and holes. The sodium ion shows the best modification effect, which enhances the rate of both photocatalytic hydrogen and hydrogen peroxide production by about 50%. Characterization shows that the introduction of strongly polar metal cations contributes to the reduction of the exciton dissociation energy of carbon nitride. This study provides a new perspective and a convenient method for the exciton modulation engineering of low-dimensional photocatalysts.
更多
查看译文
关键词
Exciton dissociation,Carbon nitride,Photocatalysis,Alkali metal ions,Exciton binding energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要