Vacancy enhanced cation ordering enables >15 solar cells

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4 and 13.5 solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要