Meningeal-derived retinoic acid regulates neurogenesis via suppression of Notch and Sox2

Christina N Como, Rebecca O'Rourke, Caitlin Winkler, Danae Mitchell, Luuli N Tran, David Lorberbaum,Lori Sussel,Santos J Franco,Julie A Siegenthaler

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
The meninges act as a regulator of brain development by secreting ligands that act on neural cells to regulate neurogenesis and neuronal migration. Meningeal-derived retinoic acid (RA) promotes neocortical neural progenitor cell cycle exit; however, the underlying molecular mechanism is unknown. Here, we used spatial transcriptomics and profiling of retinoic-acid receptor-α (RARα) DNA binding in Foxc1-mutant embryos that lack meninges-derived ligands to identify the neurogenic transcriptional mechanisms of RA signaling in telencephalic neural progenitors. We determined that meningeal-derived RA controls neurogenesis by suppressing progenitor self-renewal pathways Notch signaling and the transcription factor Sox2. We show that RARα binds in the Sox2ot promoter, a long non-coding RNA that regulates Sox2 expression, and RA promotes Sox2ot expression in neocortical progenitors. Our findings elucidate a previously unknown mechanism of how meningeal RA coordinates neocortical development and insight into how defects in meningeal development may cause neurodevelopmental disorders. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要