Synergistic removal of toxic anionic reactive red dye Me4BL (RRME4BL) from aqueous media using chemically synthesised nano-adsorbents (ZnO, CuO, NiO and CoO); equilibrium, kinetics and thermodynamic studies

CHEMISTRY AND ECOLOGY(2024)

引用 0|浏览3
暂无评分
摘要
This study explores the efficient removal of the synthetic anionic dye-reactive red Me4BL (RRMe4BL) from an aqueous medium which is a significant contributor to environmental pollution. The present study investigates the synthesis of zinc oxide, nickel oxide, cobalt oxide and copper oxide nano adsorbents (ZnO (II), NiO (II), CoO (II), CuO (II)) through the co-precipitation method and their effectiveness in eliminating the reactive red dye Me4BL(RRMe4BL). Maximum adsorption capacities were achieved at pH 2 for ZnO (96.1 mg/g), NiO (86.9 mg/g), CoO (93.4 mg/g) and at pH 6 for CuO (76.3 mg/g) under a 0.05 g/50 mL nano-adsorbent dose, 50 mg/L dye initial concentration and 25 degrees C T and 90 min of contact time. The fitness of the pseudo-2nd-order model explained the kinetics, while Langmuir and Temkin adsorption isotherm highlighted the efficiency of the dye adsorption. Thermodynamic studies revealed the spontaneous and exothermic nature of adsorption. The influence of electrolytes, surfactants and desorption was also analysed. Characterisation of the nanoparticles was done through SEM, XRD and FTIR which revealed the morphology and functional groups of nano-adsorbents. The adsorption method used for eliminating this anionic red dye shows several benefits, including affordability, simplicity of use and the presence of intelligent adsorbents for environment-friendly removal of industrial dyes from wastewater.
更多
查看译文
关键词
Adsorption,anionic dye (RRME4BL),kinetic studies,thermodynamic models,isotherm models,FTIR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要