Zinc Storage Performance of Oxygen-Deficient NH4V3O8: Theoretical and Experimental Study

Inorganics(2024)

引用 0|浏览0
暂无评分
摘要
Using density functional theory (DFT), the density of states of NH4V3O8 (NVO) was analyzed pre- and post-oxygen defect (Od) formation. The findings revealed a reduced bandgap in NVO after Od introduction, emphasizing the role of Od in enhancing conductivity of the material, thus improving its electrochemical attributes. Through the water bath method, both NVO and its oxygen-deficient counterpart, (NH4)2V10O25·8H2O (NVOd), were synthesized as potential cathode materials for aqueous zinc-ion batteries (AZIBs). Experimental outcomes resonated with DFT predictions, highlighting the beneficial role of oxygen defects in boosting electrical conductivity. Notably, the refined material displayed a remarkable capacity of 479.3 mAh g−1 at 0.1 A g−1, underscoring its promise for advanced energy storage solutions.
更多
查看译文
关键词
oxygen defects,density functional theory,aqueous zinc-ion batteries,vanadium oxides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要