A rapid, equipment-free method for detecting avirulence genes of Pyricularia oryzae using a lateral flow strip-based RPA assay.

Plant disease(2024)

引用 0|浏览4
暂无评分
摘要
Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence genes in rice planting field to facilitate the breedings of resistant rice varieties. In this study, we established a rapid RPA-LFD detection system for the identification of AvrPik, Avr-Piz-t and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting three Avr genes exhibited a remarkable specificity for at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t and Avr-Pi9 were 10 fg/μl, 100 fg/μl and 10 pg/μl, respectively. Notably, the detection sensitivity of three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed the RPA detection system for AvrPik, Avr-Pi9 and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time and accurate detection of three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of rice resistant varieties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要