Evaluation of thin film microextraction based on graphene oxide/ polymer composite: Experimental and theoretical insights.

Talanta(2024)

引用 0|浏览3
暂无评分
摘要
Experimental and theoretical assessments of a graphene oxide-based polymer as adsorbent for thin film microextraction (TFME) were conducted as part of this research. Graphene oxide (GO) was embedded in the organic polymer poly(styrene-co-divinylbenzene) (PS-DVB) to prepare a sorbent suitable for direct-immersion TFME. A TFME membrane coating prepared with the GO/PS-DVB sorbent and polydimethylsiloxane (PDMS) as binder was then applied for extraction of organic pollutants from aqueous and gaseous samples. The surface morphology of the TFME coating was examined by scanning electron microscopy (SEM). Various TFME parameters influencing extraction efficiency, such as extraction time and temperature, desorption temperature, and ionic strength, were investigated and optimized. In a comparison of TFME membranes, the GO/PS-DVB/PDMS TFME membrane was shown to yield higher extraction efficiencies for the targeted analytes than the pure PDMS and DVB/PDMS TFME membranes. The calibration graphs of the organic pollutants displayed linearity for most of the target analytes within the 10-2000 ng L-1 concentration range. The repeatability (RSD %, n = 5) and reproducibility (RSD %, n = 3) of the method were in the ranges of 2.2-5.9 %, and 3.2-8.5 %, respectively, at a concentration level of 500 ng L-1, whereas accuracy (%) ranged between 79.8 and 119 %. The developed method was successfully applied for determinations of organic pollutants in tap water, lake water, and wastewater samples. Furthermore, the impact of mass transfer kinetics on extractions by the GO/PS-DVB/PDMS TFME membrane from gaseous samples was theoretically discussed and experimentally verified. The results of this work demonstrate that the GO/PS-DVB/PDMS TFME method is a simple, efficient, and environmentally friendly method for pre-treatment of organic pollutants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要