The role of vascular adhesion protein-1 in diabetes and diabetic complications

JOURNAL OF DIABETES INVESTIGATION(2024)

引用 0|浏览2
暂无评分
摘要
Vascular adhesion protein-1 (VAP-1) plays a dual role with its adhesive and enzymatic properties, facilitating leukocyte migration to sites of inflammation and catalyzing the breakdown of primary amines into harmful by-products, which are linked to diabetic complications. Present in various tissues, VAP-1 also circulates in a soluble form in the bloodstream. Diabetes is associated with several complications such as cardiovascular disease, retinopathy, nephropathy, and neuropathy, significantly contributing to disability and mortality. These complications arise from hyperglycemia-induced oxidative stress, inflammation, and the formation of advanced glycation end-products (AGEs). Earlier research, including our own from the 1990s and early 2000s, has underscored the critical role of VAP-1 in these pathological processes, prompting extensive investigation into its contribution to diabetic complications. In this review, we examine the involvement of VAP-1 in diabetes and its complications, alongside its link to other conditions related to diabetes, such as cancer and metabolic dysfunction-associated fatty liver disease. We also explore the utility of soluble VAP-1 as a biomarker for diabetes, its complications, and other related conditions. Since the inhibition of VAP-1 to treat diabetic complications is a novel and promising treatment option, further studies are needed to translate the beneficial effect of VAP-1 inhibitors observed in animal studies to clinical trials recruiting human subjects. Besides, future studies should focus on using serum sVAP-1 levels for risk assessment in diabetic patients, identifying those who need intensive glycemic control, and determining the patient population that would benefit most from VAP-1 inhibitor therapies. Vascular adhesion protein-1 (VAP-1) has adhesive and enzymatic functions, aiding leukocyte migration to inflammation sites and producing by-products linked to diabetic complications. This review focuses on the impact of VAP-1 on diabetes and its complications, its association with related diseases, and the potential of soluble VAP-1 as a biomarker. image
更多
查看译文
关键词
diabetic complications,semicarbazide-sensitive amine oxidase,Vascular adhesion protein-1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要