Covalently Bonded Heterostructures with Mixed-Dimensional Carbons for Suppressing Mechanochemical Wear of Diamond under Heavy Loads

ACS APPLIED MATERIALS & INTERFACES(2024)

引用 0|浏览1
暂无评分
摘要
Diamond is widely acknowledged as the hardest naturally occurring material. Nevertheless, when exposed to friction against ferrous metals, it is prone to graphitization or amorphization, which limits the utilization of its extremely high hardness and wear resistance. These issues have persisted for decades without an effective solution. Here, we report that a covalently bonded heterostructure with mixed-dimensional carbons as a high-performance solid lubricant could effectively reduce diamond surface friction and mechanochemical wear with excellent load capacity and durability. When subjected to dry friction and heavy loads (20-150 N), the heterostructure exhibited a notable improvement over pristine diamond with reduced friction coefficients and relative wear rates by 22-45 and 67-91%, respectively. Especially under a 20 N load, the relative wear rate was an order of magnitude lower than that of pristine diamond. Additionally, experiments and molecular dynamics simulations revealed that the heterostructure integrated the outstanding properties of diamond (three-dimensional (3D)), nanographite (3D), and graphene (two-dimensional (2D)), resulting in improved lubrication and antiwear performance that could not be achieved by the individual carbon materials. The findings in this work will be beneficial to overcome the ferrous metal forbidden zone of diamond and are expected to expand the applications of engineered diamond surfaces and graphite/graphene in tribology, mechanics, and electronic fields.
更多
查看译文
关键词
diamond,graphene,covalent,heterostructure,mechanochemical wear
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要