Dynamic Interfacial Protection via Molecularly Tailored Copolymer for Durable Artificial Solid Electrolyte Interphase in Lithium Metal Batteries

Jing Luo, Qinzhui Huang, Dehuan Shi, Yanbin Qiu,Xinyu Zheng, Sisheng Yang,Borong Li, Jianqiang Weng,Mingmao Wu,Zheyuan Liu,Yan Yu,Chengkai Yang

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
The serious dendrite formation and safety hazards associated with side reactions hinder the practical application of lithium metal batteries. A molecular customization strategy based on both physical and chemical properties is reported. A copolymer of acrylamide and hexafluorobutyl acrylate molecules is used as an artificial solid electrolyte interface(ASEI) for lithium metal to achieve dynamic interface protection during cycling. The amide group serves as the rigid unit, while the hexafluorobutyl group serves as the flexible unit, and imparts excellent mechanical properties to the copolymer. Synergistically abundant CF bonds exhibit excellent water and oxygen resistance and have good electrolyte affinity. The ester and amide groups serve as amphiphilic sites for Li+ and PF6-, regulating the ion flux at the interface and achieving dendrite-free lithium deposition. During cycling, the organic-inorganic composite SEI dynamically evolves to safeguard the lithium metal, preventing undue electrolyte consumption. The copolymer achieves stable cycling for 1500 and 950 h at 1 and 2 mA cm-2, respectively. It demonstrates excellent performance with LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This study introduces a new approach to designing polymers at the molecular level to optimize the physical properties/chemical activity of lithium metal interfaces. The serious dendrite formation and safety hazards associated with side reactions hinder the practical application of lithium metal batteries. A molecular customization polymer based on physicochemical properties as ASEI is reported. The copolymer has excellent mechanical properties and water and oxygen resistance. The ester and amide groups serve as amphiphilic sites, regulating the ion flux and achieving dendrite-free lithium deposition. image
更多
查看译文
关键词
binary copolymer,dendrite suppression,interface engineering,lithium metal anode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要