Event-related desynchronization and synchronization in multiple sclerosis

Multiple Sclerosis and Related Disorders(2024)

引用 0|浏览1
暂无评分
摘要
Background Motor preparation and execution can be impaired in patients with multiple sclerosis (pwMS). These neural processes can be assessed using electroencephalography (EEG). During a self-paced movement, EEG signal amplitude decreases before movement (event-related desynchronization, ERD) and increases after movement (event-related synchronization, ERS). Objective To reappraise ERD/ERS changes in pwMS compared to healthy controls (HC). Methods This single-center study included 13 pwMS and 10 sex/age-matched HC. 60-channel EEG was recorded during two self-paced movements of the right hand: a simple index finger extension task and a more complex finger tapping task. Clinical variables included MS type, sex, age, disease duration, disability, grip strength, fatigue and attentional performance. EEG variables included ERD and ERS onset latency, duration, and amplitude determined using two methods of signal analyses (based on visual or automated determination) in the alpha and beta frequency bands in five cortical regions: right and left frontocentral and centroparietal regions and a midline region. Neuroimaging variables included the volumes of four deep brain structures (thalamus, putamen, pallidum and caudate nucleus) and the relative lesion load. Results ERD/ERS changes in pwMS compared to HC were observed only in the beta band. In pwMS, beta-ERD had a delayed onset in the midline and right parietocentral regions and a shortened duration or increased amplitude in the parietocentral region; beta-ERS had a shorter duration, delayed onset, or reduced amplitude in the left parieto/frontocentral region. In addition, pwMS with a more delayed beta-ERD in the midline region had less impaired executive functions but increased caudate nuclei volume, while pwMS with a more delayed beta-ERS in the parietocentral region contralateral to the movement had less fatigue but increased thalami volume. Conclusion This study confirms an alteration of movement preparation and execution in pwMS, mainly characterized by a delayed cortical activation (ERD) and a delayed and reduced post-movement inhibition (ERS) in the beta band. Compensatory mechanisms could be involved in these changes, associating more preserved clinical performance and overactivation of deep brain structures.
更多
查看译文
关键词
Event-Related Desynchronization,Event-Related Synchronization,Motor Function,Multiple Sclerosis,Sensorimotor Network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要