Research on distributed strain monitoring of a bridge based on a strained optical cable with weak fiber Bragg grating array.

Lina Yue, Qing Wang,Fang Liu,Qiuming Nan, Guanghui He,Sheng Li

Optics express(2024)

引用 0|浏览0
暂无评分
摘要
The foundation of an intelligent highway network is the construction of a high-density distributed strain monitoring system, which is based on sensing elements that can sensitively capture external information. In this research, the development and application for the structure of a novel strained optical fiber cable based on the weak fiber Bragg grating (wFBG) arrays are discussed. A modulation and demodulation solution of wavelength division multiplexing combined with time division multiplexing is developed by utilizing the property by which the wavelength of the strained optical fiber cable is periodically switched. Further, the strain transfer model of the optical cable is analyzed hierarchically using the theory of elasticity. The strain transfer coefficients of the overhanging region and the gluing region are combined to deduce the sensitivity model of the strained optical fiber cable. Moreover, the finite element technique is integrated to optimize the structural parameters of the optical cable for high-sensitivity or large-scale range. The strained optical fiber cable based on wFBG arrays is applied to a steel-concrete composite bridge. The static and dynamic loading tests show that the sensing optical cable can be monitored for strain variation in order to realize the functions of lane identification, weighing vehicle tonnage as well as velocity discrimination.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要