Computationally Efficient Unsupervised Deep Learning for Robust Joint AP Clustering and Beamforming Design in Cell-Free Systems

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
In this paper, we consider robust joint access point (AP) clustering and beamforming design with imperfect channel state information (CSI) in cell-free systems. Specifically, we jointly optimize AP clustering and beamforming with imperfect CSI to simultaneously maximize the worst-case sum rate and minimize the number of AP clustering under power constraint and the sparsity constraint of AP clustering. By transformations, the semi-infinite constraints caused by the imperfect CSI are converted into more tractable forms for facilitating a computationally efficient unsupervised deep learning algorithm. In addition, to further reduce the computational complexity, a computationally effective unsupervised deep learning algorithm is proposed to implement robust joint AP clustering and beamforming design with imperfect CSI in cell-free systems. Numerical results demonstrate that the proposed unsupervised deep learning algorithm achieves a higher worst-case sum rate under a smaller number of AP clustering with computational efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要