Robust Approach for Quantifying Glucocorticoid Binding to the Anti-Cortisol Fab Fragment via Native Mass Spectrometry.

ACS omega(2024)

引用 0|浏览0
暂无评分
摘要
In the development of proteins, aptamers, and molecular imprints for diagnostic purposes, a major goal is to obtain a molecule with both a high binding affinity and specificity for the target ligand. Cushing syndrome or Addison's disease can be diagnosed by cortisol level tests. We have previously characterized and solved the crystal structure of an anti-cortisol (17) Fab fragment having a high affinity to cortisol but also significant cross-reactivity to other glucocorticoids, especially the glucocorticoid drug prednisolone. We used native mass spectrometry (MS) to determine the binding affinities of nine steroid hormones to anti-cortisol (17) Fab, including steroidogenic precursors of cortisol. Based on the results, the number of hydroxyl groups in the structure of a steroid ligand plays a key role in the antigen recognition by the Fab fragment as the ligands with three hydroxyl groups, cortisol and prednisolone, had the highest affinities. The antibody affinity toward steroid hormones often decreases with a decrease in the number of hydroxyl groups in the structure. The presence of the hydroxyl group at position C11 increased the affinity more than did the other hydroxyl groups at positions C17 or C21. The binding affinities obtained by native MS were compared to the values determined by surface plasmon resonance (SPR), and the affinities were found to correlate well between these two techniques. Our study demonstrates that native MS with a large dynamic range and high sensitivity is a versatile tool for ligand binding studies of proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要