Enhancement of electrocatalysis through magnetic field effects on mass transport

Priscila Vensaus,Yunchang Liang, Jean-Philippe Ansermet, Galo J. A. A. Soler-Illia,Magali Lingenfelder

NATURE COMMUNICATIONS(2024)

引用 0|浏览3
暂无评分
摘要
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles' movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies. Magnetic fields can enhance electrocatalysis, yet its effect on mass transport has been overlooked. Here, the authors track the motion induced on the electrolyte ions, demonstrating that mass transport effects can double the catalyst activity with low reactant availability, as in oxygen reduction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要