Integration of rice apocarotenoid profile and expression pattern of Carotenoid Cleavage Dioxygenases reveals a positive effect of -ionone on mycorrhization

PLANT PHYSIOLOGY AND BIOCHEMISTRY(2024)

引用 0|浏览0
暂无评分
摘要
Carotenoids are susceptible to degrading processes initiated by oxidative cleavage reactions mediated by Carotenoid Cleavage Dioxygenases that break their backbone, leading to products called apocarotenoids. These carotenoid-derived metabolites include the phytohormones abscisic acid and strigolactones, and different signaling molecules and growth regulators, which are utilized by plants to coordinate many aspects of their life. Several apocarotenoids have been recruited for the communication between plants and arbuscular mycorrhizal (AM) fungi and as regulators of the establishment of AM symbiosis. However, our knowledge on their biosynthetic pathways and the regulation of their pattern during AM symbiosis is still limited. In this study, we generated a qualitative and quantitative profile of apocarotenoids in roots and shoots of rice plants exposed to high/low phosphate concentrations, and upon AM symbiosis in a time course experiment covering different stages of growth and AM development. To get deeper insights in the biology of apocarotenoids during this plantfungal symbiosis, we complemented the metabolic profiles by determining the expression pattern of CCD genes, taking advantage of chemometric tools. This analysis revealed the specific profiles of CCD genes and apocarotenoids across different stages of AM symbiosis and phosphate supply conditions, identifying novel reliable markers at both local and systemic levels and indicating a promoting role of beta-ionone in AM symbiosis establishment.
更多
查看译文
关键词
Apocarotenoids,Arbuscular mycorrhizal symbiosis,Carotenoid cleavage dioxygenases,Rice,Strigolactone,Zaxinone,beta-ionone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要