Interface engineering in a nitrogen-rich COF/BiOBr S-scheme heterojunction triggering efficient photocatalytic degradation of tetracycline antibiotics

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览0
暂无评分
摘要
Tetracycline (TC) antibiotics, extensively utilized in livestock farming and aquaculture, pose significant environmental challenges. Photocatalysis, leveraging renewable sunlight and reusable photocatalysts, offers a promising avenue for mitigating TC pollution. However, identifying robust photocatalysts remains a formidable challenge. This study introduces a novel hollow -flower -ball -like nanoheterojunction composed of a nitrogen -rich covalent organic framework (N-COF) coupled with BiOBr (BOB), a semiconductor with a higher Fermi level. The synthesized N-COF/BOB S -scheme nanoheterojunction features an expanded contact interface, strengthened chemical bonding, and unique band topologies. The N-COF/BOB composites showcased exceptional TC degradation performance, achieving an 81.2% removal of 60 mg/L TC within 2 h, markedly surpassing the individual efficiencies of N-COF and BOB by factors of 3.80 and 5.96, respectively. Furthermore, the total organic carbon (TOC) removal efficiency highlights a superior mineralization capacity in the N-COF/BOB composite compared to the individual components, N-COF and BOB. The toxicity assessment revealed that the degradation intermediates possess diminished environmental toxicity. This enhanced performance is ascribed to the robust Sscheme nanoheterojunction structure, which promotes efficient photoinduced electron transfer from BOB to NCOF. This process also augments the separation of photogenerated charge carriers, resulting in an increased yield of superoxide radicals (center dot O2 ) and hydroxyl radicals (center dot OH). These reactive species significantly contribute to the degradation and mineralization of TC. Consequently, this study introduces a sustainable approach for addressing emerging antibiotic contaminants, employing COF-based photocatalysts.
更多
查看译文
关键词
Antibiotics,Tetracycline,Covalent organic frameworks,S -scheme heterojunction,Photocatalytic degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要