Synthesis of Cu3Fe4V6O24 Nanoparticles to Produce 1,2,3-Triazoles by Azide-Alkyne Cycloaddition Reactions

LANGMUIR(2024)

引用 0|浏览0
暂无评分
摘要
This paper presents the fabrication of novel Cu3Fe4V6O24 nanoparticles (NPs) via a facile sol-gel method as efficient nanocatalysts (NCs) to produce azide-alkyne 1,3-dipolar cycloaddition compounds. The effect of the calcination time on the formation of NPs was investigated. The as-prepared NPs were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET) analyses. Cu3Fe4V6O24 NCs were applied to azide-alkyne 1,3-dipolar cycloaddition reactions. The effect of the catalyst loading, temperature, and time of reaction was optimized to improve the efficiency of the NC function by the response surface methodology-central composite design (RSM-CCD) method. In optimal conditions, the yield of the reaction was 96%. In addition, the effect of different solvents on the yield of the reaction was investigated. Moreover, Cu3Fe4V6O24 NPs efficiently catalyze different 1,2,3-triazoles in excellent yields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要