Reversal of High Fat Diet-Induced Obesity, Systemic Inflammation, and Astrogliosis by the NLRP3 Inflammasome Inhibitors NT-0249 and NT-0796S

Peter Thornton, Valerie Reader, Zsofia Digby,Pamela Smolak, Nicola Lindsay,David Harrison, Nick Clarke,Alan P. Watt

JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS(2024)

引用 0|浏览2
暂无评分
摘要
Systemic and cerebral inflammatory responses are implicated in the pathogenesis of obesity and associated metabolic impairment. While the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to obesity-associated inflammation, whether it contributes to the development or maintenance of obesity is unknown. We provide support for a direct role of saturated fatty acids, such as palmitic acid, as NLRP3 activating stimuli in obese states. To investigate whether NLRP3 activation contributes to the pathogenesis of diet-induced obesity (DIO) in mice, we tested two different clinical-stage NLRP3 inflammasome inhibitors. We demonstrate a contributory role of this key inflammasome to established obesity and associated systemic and cerebral inflammation. By comparing their effects to calorie restriction, we aimed to identify specific NLRP3-sensitive mechanisms contributing to obesity-induced inflammation (as opposed to be those regulated by weight loss per se). In addition, a direct comparison of an NLRP3 inhibitor to a glucagon like peptide -1 receptor agonist, semaglutide (Wegovy), in the DIO model allowed an appreciation of the relative efficacy of these two therapeutic strategies on obesity, its associated systemic inflammatory response, and cerebral gliosis. We show that two structurally distinct, NLRP3 inhibitors, NT -0249 and NT -0796, reverse obesity in the DIO mouse model and that brain exposure appears necessary for efficacy. In support of this, we show that DIO-driven hypothalamic glial fibrillary acidic protein expression is blocked by dosing with NT-0249/NT-0796. While matching weight loss driven by semaglutide or calorie restriction, remarkably, NLRP3 inhibition provided enhanced improvements in disease-relevant biomarkers of acute phase response, cardiovascular inflammation, and lipid metabolism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要