Oral administration of grape-derived nanovesicles for protection against LPS/D-GalN-induced acute liver failure

INTERNATIONAL JOURNAL OF PHARMACEUTICS(2024)

引用 0|浏览0
暂无评分
摘要
Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grapederived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1 beta and TNF-alpha. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the proinflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.
更多
查看译文
关键词
Grape-derived nanovesicles,Acute liver failure,Macrophage,CCR2/CCR5,Autophagy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要