Platinum Nanoparticles Regulated V2C MXene Nanoplatforms with NIR-II Enhanced Nanozyme Effect for Photothermal and Chemodynamic Anti-Infective Therapy

Xiaojun He, Ya Lv, Yanling Lin, Hong Yu, Yipiao Zhang,Yuhua Tong,Chunwu Zhang

ADVANCED MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
Given the challenge of multidrug resistance in antibiotics, non-antibiotic-dependent antibacterial strategies show promise for anti-infective therapy. V2C MXene-based nanomaterials have demonstrated strong biocompatibility and photothermal conversion efficiency (PCE) for photothermal therapy (PTT). However, the limitation of V2C MXene's laser irradiation to the near-infrared region I (NIR-I) restricts tissue penetration, making it difficult to achieve complete bacterial eradication with single-effect therapeutic strategies. To address this, Pt nanoparticles (Pt NPs) are attached to V2C, forming artificial nanoplatforms (Pt@V2C). Pt@V2C exhibits enhanced PCE (59.6%) and a longer irradiation laser (NIR-II) due to the surface plasmon resonance effect of Pt NPs and V2C. Notably, Pt@V2C displays dual enzyme-like activity with chemodynamic therapy (CDT) and NIR-II enhanced dual enzyme-like activity. The biocatalytic mechanism of Pt@V2C is elucidated using density functional theory. In an in vivo animal model, Pt@V2C effectively eliminates methicillin-resistant Staphylococcus aureus from deep-seated tissues in subcutaneous abscesses and bacterial keratitis environments, accelerating abscess resolution and promoting wound and cornea healing through the synergistic effects of PTT/CDT. Transcriptomic analysis reveals that Pt@V2C targets inflammatory pathways, providing insight into its therapeutic mechanism. This study presents a promising therapeutic approach involving hyperthermia-amplified biocatalysis with Pt NPs and MXene nanocomposites.
更多
查看译文
关键词
chemodynamic therapy,methicillin-resistant Staphylococcus aureus,near-infrared II irradiation,transcriptomics,V2C MXene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要