Molecular mechanisms of calcium inducing salt tolerance in rice: Ameliorative interaction between CBL4 and P5CR proteins

Banhishikha Singh, Anuvab Chatterjee,Rajeshwari Chatterjee, Mou Chatterjee, Soma Banerjee

Agrokémia és Talajtan(2024)

引用 0|浏览0
暂无评分
摘要
The rice plant is sensitive to soil salinity. Calcium (Ca) acts as an ameliorative agent that helps plants induce salt tolerance. This study was carried out with a comparison of the ameliorative effect of calcium on salt-stressed rice seedlings, the determination of the role of salt-responsive protein groups, and the analysis of their genetic expressions in 21-day-old rice seedlings of ten locally cultivable varieties of West Bengal. For this study, 15-day-old seedlings were treated with 200 mM of sodium chloride (NaCl) solutions along with 10 mM of calcium sulfate (CaSO4) treatment. The determination of the relationship between the salt-responsive proteins and the analysis of the gene expression of those corresponding proteins were not carried out earlier on the selected ten locally cultivable rice varieties of West Bengal. The NaCl crystals were visible on the abaxial leaf surface of salt-stressed rice seedlings. The superoxide dismutase activity was increased in rice varieties, and a similar result was also expressed with calcium treatment. The fourier transform infrared spectroscopy-attenuated total reflection spectral result gave strong evidence for the presence of several salt-tolerant proteins and their genetic expression. STRING database results have suggested that the calcium treatment, coupled with the expression of the CBL4 protein, has regulated the P5CR protein of proline biosynthesis for better salt tolerance and osmotic protection. The quantitative real-time polymerase chain reaction and SDS-PAGE gel electrophoresis analysis showed that salt-tolerant varieties, Chinsurah_nona_1, and Jarava had high calcium signaling mechanisms and osmo-protection abilities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要