DEMO: Dose Exploration, Monitoring, and Optimization Using a Biological Mediator for Clinical Outcomes

Cheng-Han Yang,Peter F. Thall,Ruitao Lin

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Phase 1-2 designs provide a methodological advance over phase 1 designs for dose finding by using both clinical response and toxicity. A phase 1-2 trial still may fail to select a truly optimal dose. because early response is not a perfect surrogate for long term therapeutic success. To address this problem, a generalized phase 1-2 design first uses a phase 1-2 design's components to identify a set of candidate doses, adaptively randomizes patients among the candidates, and after longer follow up selects a dose to maximize long-term success rate. In this paper, we extend this paradigm by proposing a design that exploits an early treatment-related, real-valued biological outcome, such as pharmacodynamic activity or an immunological effect, that may act as a mediator between dose and clinical outcomes, including tumor response, toxicity, and survival time. We assume multivariate dose-outcome models that include effects appearing in causal pathways from dose to the clinical outcomes. Bayesian model selection is used to identify and eliminate biologically inactive doses. At the end of the trial, a therapeutically optimal dose is chosen from the set of doses that are acceptably safe, clinically effective, and biologically active to maximize restricted mean survival time. Results of a simulation study show that the proposed design may provide substantial improvements over designs that ignore the biological variable.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要