Solvent-free parallel artificial liquid membrane extraction for drugs of abuse in plasma samples using LC-MS/MS.

Analytica chimica acta(2024)

引用 0|浏览5
暂无评分
摘要
BACKGROUND:Parallel artificial liquid membrane extraction (PALME) is a 96-well plate setup variant of liquid-phase microextraction. Basic or acidic analytes are extracted in neutral form from the sample, through a supported liquid membrane (SLM), and into aqueous acceptor. PALME is already considered a green extraction technique, but in the current conceptual work, we sought to make it even greener by replacing the use of organic solvents with essential oils (EO). PALME was combined with LC-MS/MS for analysis of plasma samples and multiple drugs of abuse with toxicological relevance (amphetamines, phenethylamines, synthetic cathinones, designer benzodiazepines, ayahuasca alkaloids, lysergic acid diethylamide, and ketamine). RESULTS:Fourteen EO were compared to organic solvents frequently used in PALME. The EO termed smart & sassy yielded the best analyte recovery for all drugs studied and was thus selected as SLM. Then, factorial screening and Box-Behnken were employed to optimize the technique. The extraction time, concentration of base, sample volume, and percentage of trioctylamine significantly impacted analyte recovery. The optimum values were defined as 120 min, 10 mmol/L of NaOH, 150 μL, and 0%, respectively. Once optimized, validation parameters were 1-100 ng mL-1 as linear range, accuracy ±16.4%, precision >83%, 1 ng mL-1 as limit of quantitation, 0.1-0.75 ng mL-1 as limit of detection, matrix effect <20%, and recovery 20-106%. Additionally, EO purchased from different production batches were tested and achieved acceptable reproducibility. Data were in compliance with requirements set by internationally accepted validation guidelines and the applicability of the technique was proven using authentic samples. SIGNIFICANCE:In this study, the use of an EO provided a solvent-free sample preparation technique suited to extract different classes of drugs of abuse from plasma samples, dismissing the use of hazardous organic solvents. The method also provided excellent sample clean-up, thus being a simple and efficient tool for toxicological applications that is in agreement with the principles of sustainable chemistry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要