CD34+ cell transplantation alleviates fibrotic liver injury via innate immune modulation in metabolic dysfunction-associated steatohepatitis mice

Cytotherapy(2024)

引用 0|浏览1
暂无评分
摘要
Background : In drug-induced liver injury, vascular endothelial progenitor cells, specifically the CD34+ cell fractions, have been found to decrease liver fibrosis and promote regeneration. However, it is unclear whether CD34+ cell transplantation has anti-fibrogenic effects on MASH, which has previously been treated effectively with anti-angiogenic therapy. We investigated the efficacy of ex vivo-expanded CD34+ cells in treating MASH livers. Materials and methods : Diet-induced MASH mice were fed a choline-deficient, L-amino acid-defined, high-fat diet for 12 or 20 weeks, and were designated as a mild and a severe fibrosis model, respectively. Mouse bone marrow CD34+ cells were expanded for 7 days, transplanted into each mouse once or twice 2 weeks later, and sacrificed at 4 weeks after the first transplantation. Results : Expanded CD34+ cell transplantation ameliorated liver fibrosis, regardless of fibrosis degree, as indicated by the decrease in α-smooth muscle actin-positive cells, hydroxyproline concentration, and fibrogenic gene expression of Col1a1 and Timp1. Furthermore, engrafted CD34+ cells reduced alanine transaminase levels, the number of TUNEL+ hepatocytes, and 8-OHdG concentration. RNA-sequencing data showed that "defense response to virus" was the most down-regulated category in the Gene Ontology analysis and subsequent analysis revealed the suppression of RIG-I-like receptors/Irf7/Stat1/Cxcl10 axis in expanded CD34+ cell-transplanted livers. Finally, the downregulation of CXCL10 expression inhibits the mobilization of inflammatory immune cells, macrophages, T cells, and natural killer cells to the MASH liver. Conclusions : These findings suggest that transplanted expanded CD34+ cells alleviate fibrotic liver injury in MASH mouse models through possible modulation of the innate immune response, which is abnormally activated by hepatocyte lipotoxicity.
更多
查看译文
关键词
liver fibrosis,liver regeneration,endothelial progenitor cell,oxidative stress,RIG-I
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要