NOx Emission Predictions in Gas Turbines through Integrated Data-Driven Machine Learning Approaches

Kazi Ekramul Hoque, Tahiya Hossain, ABM Mominul Haque, Md. Abdul Karim Miah,Md Azazul Haque

Journal of Energy Resources Technology(2024)

引用 0|浏览0
暂无评分
摘要
Abstract The reduction of NOx emissions is a paramount endeavor in contemporary engineering and energy production, as these emissions are closely linked to adverse environmental and health impacts. The prediction of NOx emission from gas turbines through several integrated data-driven machine learning methods have been evaluated in study. The study also assesses the performance of ensemble machine learning models in comparison to conventional methods, with results indicating the superior accuracy of ensemble models. Specifically, the Random Forest model achieved an accuracy rate of 91.68%, XGBoost yielded an accuracy of 91.54%, and CATBoost exhibited the highest accuracy at 92.76%. These findings highlight the capability of data-driven machine learning techniques to enhance NOx emission predictions in gas turbines. This enhancement aids in the development and implementation of more effective control and mitigation strategies in practical applications. Through the application these advanced machine learning approaches, the gas turbine industry can play a pivotal role in minimizing its environmental impact while optimizing operational efficiency. This study also provides valuable insights into the effectiveness of ensemble machine learning models, advancing our understanding of their capabilities in addressing the critical issue of NOx emissions from gas turbines.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要