Sensing and Imaging Molecular Oxygen in Mammals with Spin Lattice Relaxation Electron Paramagnetic Resonance

Molecular Imaging and Biology(2024)

引用 0|浏览0
暂无评分
摘要
Molecular oxygen and its thermodynamic transformation drive nearly all life processes. Quantitative measurement and imaging of oxygen in living systems is of fundamental importance for the study of life processes and their aberrations—disease– many of which are affected by hypoxia, or low levels of oxygen. Cancer is among the disease processes profoundly affected by hypoxia. Electron paramagnetic resonance has been shown to provide remarkably accurate images of normal and cancerous tissue. In this review, we emphasize the reactivity of molecular oxygen particularly highlighting the metabolic processes of living systems to store free energy in the reactants. The history of hypoxic resistance of living systems to cytotoxic therapy, particularly radiation therapy is also reviewed. The measurement and imaging of molecular oxygen with pulse spin lattice relaxation (SLR) electron paramagnetic resonance (EPR) is reviewed briefly. This emphasizes the advantages of the spin lattice relaxation based measurement paradigm to reduce the sensitivity of the measurement to the presence of the oxygen sensing probe itself. The involvement of a novel small mammal external beam radiation delivery system is described. This enables an experimental paradigm based on control by radiation of the last resistant clonogen. This is much more specific for tumor cure than growth delay assays which primarily reflects control of tumor cells most sensitive to therapy.
更多
查看译文
关键词
History of oxygen,Hypoxic radiation resistance,Imaging oxygen,Spin lattice relaxation,Electron paramagnetic resonance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要