Navigating Eukaryotic Genome Annotation Pipelines: A Route Map to BRAKER, Galba, and TSEBRA

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Annotating the structure of protein-coding genes represents a major challenge in the analysis of eukaryotic genomes. This task sets the groundwork for subsequent genomic studies aimed at understanding the functions of individual genes. BRAKER and Galba are two fully automated and containerized pipelines designed to perform accurate genome annotation. BRAKER integrates the GeneMark-ETP and AUGUSTUS gene finders, employing the TSEBRA combiner to attain high sensitivity and precision. BRAKER is adept at handling genomes of any size, provided that it has access to both transcript expression sequencing data and an extensive protein database from the target clade. In particular, BRAKER demonstrates high accuracy even with only one type of these extrinsic evidence sources, although it should be noted that accuracy diminishes for larger genomes under such conditions. In contrast, Galba adopts a distinct methodology utilizing the outcomes of direct protein-to-genome spliced alignments using miniprot to generate training genes and evidence for gene prediction in AUGUSTUS. Galba has superior accuracy in large genomes if protein sequences are the only source of evidence. This chapter provides practical guidelines for employing both pipelines in the annotation of eukaryotic genomes, with a focus on insect genomes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要