Quantum asymptotic amplitude for quantum oscillatory systems from the Koopman operator viewpoint

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
We have recently proposed a fully quantum-mechanical definition of the asymptotic phase for quantum nonlinear oscillators, which is also applicable in the strong quantum regime [Kato and Nakao 2022 Chaos 32 063133]. In this study, we propose a definition of the quantum asymptotic amplitude for quantum oscillatory systems, which extends naturally the definition of the asymptotic amplitude for classical nonlinear oscillators on the basis of the Koopman operator theory. We introduce the asymptotic amplitude for quantum oscillatory systems by using the eigenoperator of the backward Liouville operator associated with the largest non-zero real eigenvalue. Using examples of the quantum van der Pol oscillator with the quantum Kerr effect, exhibiting quantum limit-cycle oscillations, and the quantum van der Pol model with the quantum squeezing and degenerate parametric oscillator with nonlinear damping, exhibiting quantum noise-induced oscillations, we illustrate that the proposed quantum asymptotic amplitude appropriately yields isostable amplitude values that decay exponentially with a constant rate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要