Preparation of Ti/SnO2-Sb2O4-La Electrode with TiO2 Nanotubes Intermediate Layer and the Electrochemical Oxidation Performance of Rhodamine B.

Yuanzhen He,Dengjie Zhong,Yunlan Xu, Ran Jiang, Jiayou Zhang, Pengfei Liao

Langmuir : the ACS journal of surfaces and colloids(2024)

引用 0|浏览0
暂无评分
摘要
A La-doped Ti/SnO2-Sb2O4 electrode with TiO2-NTs intermediate layer (Ti/TiO2-NTs/SnO2-Sb2O4-La) was created via the electrodeposition technique. The physicochemical and electrochemical properties of the electrode were analyzed through FESEM, XRD, XPS, CV, and LSV electrochemical tests. The results showed that TiO2-NTs were tightly packed on the surface of Ti substrate, thus improving the binding force of the SnO2-Sb2O4-La coating, offering greater specific surface area, more active spots, higher current response, and longer lifespan for the degradation of rhodamine B. The lifespan of the Ti/TiO2-NTs/SnO2-Sb2O4-La electrode reached 200 min (1000 mA cm-2, 1 M H2SO4), while the actual service life was up to 3699 h. Under the conditions of initial pH 3.0, Na2SO4 concentration of 0.1 M, current density of 30 mA cm-2, and initial rhodamine B concentration of 20 mg L-1, the color and TOC removal rate of rhodamine B reached 100% and 86.13% within 15 and 30 min, respectively. Rhodamine B was decomposed into acids, esters, and other molecular compounds under the action of •OH and SO4•- free radicals and electrocatalysis, and finally completely mineralized into CO2 and H2O. It is anticipated that this work will yield a novel research concept for producing DSA electrodes with superior catalytic efficacy and elevated stability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要