Identification of Oxidative-Stress-Reducing Plant Extracts from a Novel Extract Library-Comparative Analysis of Cell-Free and Cell-Based In Vitro Assays to Quantitate Antioxidant Activity

Mara Heckmann,Verena Stadlbauer,Ivana Drotarova, Theresa Gramatte, Michaela Feichtinger, Verena Arnaut, Stefanie Atzmueller,Bettina Schwarzinger,Clemens Roehrl,Bernhard Blank-Landeshammer,Julian Weghuber

ANTIOXIDANTS(2024)

引用 0|浏览0
暂无评分
摘要
Numerous underexplored plant species are believed to possess considerable potential in combating oxidative stress and its associated health impacts, emphasizing the need for a comprehensive methodological screening approach to assess their antioxidant capacity. This study investigated 375 plant extracts, utilizing both cell-free and cellular methods to evaluate their antioxidant properties. Target-based antioxidant capacity was evaluated by the total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) assays. Cell-based assays employed the H2DCF-DA probe to measure reactive oxygen species (ROS) levels and the Griess assay to quantify nitric oxide (NO) levels in stressed Caco-2 and RAW264.7 cells, respectively. The highest TPC and FRAP values were found in extracts of Origanum vulgare and Fragaria x ananassa leaves. Several plant extracts significantly reduced stress-induced ROS or NO levels by at least 30%. Distinctive selectivity was noted in certain extracts, favoring the significant reduction of NO (e.g., Helianthus tuberosus extract), of ROS (e.g., Prunus domestica subsp. Syriaca extract), or of both (e.g., Fragaria x ananassa leaf extract). A strong correlation between TPC and FRAP values and moderate correlations between the results of the cell-free and cell-based assays were evident. These findings highlight the great antioxidant potential of underexplored plant extracts and the diversity of the underlying mechanisms, emphasizing the importance of a multifaceted approach for a comprehensive assessment.
更多
查看译文
关键词
oxidative stress,plant extracts,antioxidant,extract library,screening,ROS,NO
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要