Biomimetic dual-phase ceramic lattice architectures with enhanced mechanical and vibration isolation performances

Materials Today Communications(2024)

引用 0|浏览0
暂无评分
摘要
Ceramic materials have broad application prospects for impact/perforation protection purposes due to their high strength, high hardness, and other characteristics. Nevertheless, the high brittleness, susceptibility to fracture, and difficulty in processing and forming limit the popularization of ceramic components. This paper proposed a novel silica gel-filled dual-phase ceramic lattice meta-structure based on a biomimetic biphasic design method to achieve the improvement of mechanical properties. Two configurations of dual-phase body-centered cubic (BCC) and face-centered cubic (FCC) ceramic lattice structures were designed and fabricated through DLP-based additive manufacturing and simple filling technology. Quasi-static compression and dynamic vibration testing were conducted. Comparisons between single-phase and dual-phase ceramic lattices were performed from the perspective of compression strength, fracture toughness, and vibration level difference. It was demonstrated that the addition of soft silica gel reduced the stress concentration at the connection of the lattice rod and effectively inhibited the crack propagation. The dual-phase BCC lattice structure exhibited a 3 times increase in toughness and a 4.2 times increase in compressive strength relative to the single-phase design. The toughness and compressive strength of the dual-phase FCC ceramic lattice were increased by 1.4 times. The introduction of the soft silica gel achieved a significant vibration isolation in the pre-resonance frequency band between 1000Hz to 3000Hz. This study provides a reliable method for constructing biomimetic dual-phase meta-structures with both load-bearing capacity and low-frequency vibration isolation capacity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要