Supercritical Operation of Bearingless Cross-Flow Fan

Machines(2024)

引用 0|浏览0
暂无评分
摘要
This paper presents a decoupled bearingless cross-flow fan (CFF) that operates at a supercritical speed, thereby increasing the maximum achievable rotational speed and fluid dynamic power. In magnetically levitated CFF rotors, the rotational speed and fan performance are limited by the bending resonance frequency. This is primarily defined by the low mechanical bending stiffness of the CFF blades, which are optimised for fluid dynamic performance, and the heavy rotor magnets on both rotor sides, which add significant mass but a minimal contribution to the overall rotor stiffness. This results in detrimental deformations of the CFF blades in the vicinity of the rotor bending resonance frequency; hence, the CFF is speed-limited to subcritical rotational speeds. The novel CFF rotor presented in this study features additional mechanical decoupling elements with low bending stiffness between the fan blades and the rotor magnets. Thus, the unbalance forces primarily deform the soft decoupling elements, which enables them to pass resonances without CFF blade damage and allows rotor operation in the supercritical speed region due to the self-centring effect of the rotor. The effects of the novel rotor design on the rotor dynamic behaviour are investigated by means of a mass-spring-damper model. The influence of different decoupling elements on the magnetic bearing is experimentally tested and evaluated, from which an optimised decoupled CFF rotor is derived. The final prototype enables a stable operation at 7000 rpm in the supercritical speed region. This corresponds to a rotational speed increase of 40%, resulting in a 28% higher, validated fluid flow and a 100% higher static pressure compared to the previously presented bearingless CFF without decoupling elements.
更多
查看译文
关键词
bearingless motors,cross-flow-fan,rotor dynamics,rotor decoupling,resonance frequency,supercritical speed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要