Gray matter volume associations in youth with ADHD features of inattention and hyperactivity/impulsivity

Human Brain Mapping(2024)

引用 0|浏览0
暂无评分
摘要
AbstractBackgroundPrior research has shown smaller cortical and subcortical gray matter volumes among individuals with attention‐deficit/hyperactivity disorder (ADHD). However, neuroimaging studies often do not differentiate between inattention and hyperactivity/impulsivity, which are distinct core features of ADHD. The present study uses an approach to disentangle overlapping variance to examine the neurostructural heterogeneity of inattention and hyperactivity/impulsivity dimensions.MethodsWe analyzed data from 10,692 9‐ to 10‐year‐old children from the Adolescent Brain Cognitive Development (ABCD) Study. Confirmatory factor analysis was used to derive factors representing inattentive and hyperactive/impulsive traits. We employed structural equation modeling to examine these factors' associations with gray matter volume while controlling for the shared variance between factors.ResultsGreater endorsement of inattentive traits was associated with smaller bilateral caudal anterior cingulate and left parahippocampal volumes. Greater endorsement of hyperactivity/impulsivity traits was associated with smaller bilateral caudate and left parahippocampal volumes. The results were similar when accounting for socioeconomic status, medication, and in‐scanner motion. The magnitude of these findings increased when accounting for overall volume and intracranial volume, supporting a focal effect in our results.ConclusionsInattentive and hyperactivity/impulsivity traits show common volume deficits in regions associated with visuospatial processing and memory while at the same time showing dissociable differences, with inattention showing differences in areas associated with attention and emotion regulation and hyperactivity/impulsivity associated with volume differences in motor activity regions. Uncovering such biological underpinnings within the broader disorder of ADHD allows us to refine our understanding of ADHD presentations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要