Green synthesis of positive electrodes for high performance structural batteries - A study on graphene additives

Composites Science and Technology(2024)

引用 0|浏览0
暂无评分
摘要
Carbon fibres (CF) have the potential to serve as versatile and multifunctional conductive electrodes within the concept of “structural batteries”. These batteries possess the unique ability to both store electrical energy and bear mechanical loads without requiring extra current collectors. However, numerous challenges remain on the path to commercializing structural batteries. One significant challenge lies in the fabrication process of CF-based cathode composites, including the poor adhesion of active materials to the CF surface and the use of hazardous organic solvents, such as N-methyl pyrrolidone (NMP) through traditional blade coating. In this study, we present a sustainable fabrication approach, using electrophoretic deposition (EPD) to construct positive electrode composites with lithium iron phosphate (LiFePO4) and graphene nanosheets. Especially, ethanol was used as a green solvent replacing NMP to minimize the environmental impact. Meanwhile, the influence of different types of graphene additives (three kinds of graphene nanoplatelets (GNP), four kinds of reduced graphene oxide (rGO) and one home-made graphene) to the relative battery performance were evaluated under a systematic comparative analysis. Among the tested graphene additives, LFP/rGO2 based positive electrode exhibits a desirable specific capacity of 126.2 mAhg−1, maintaining over 93% retention even under the demanding conditions of 2C over 500 cycles.
更多
查看译文
关键词
Carbon fibre,Structural batteries,Electrophoretic deposition,Green synthesis,Graphene additives
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要