BEV-MAE: Bird’s Eye View Masked Autoencoders for Point Cloud Pre-training in Autonomous Driving Scenarios

Zhiwei Lin,Yongtao Wang, Shengxiang Qi, Nan Dong,Ming-Hsuan Yang

AAAI 2024(2024)

引用 0|浏览8
暂无评分
摘要
Existing LiDAR-based 3D object detection methods for autonomous driving scenarios mainly adopt the training-from-scratch paradigm. Unfortunately, this paradigm heavily relies on large-scale labeled data, whose collection can be expensive and time-consuming. Self-supervised pre-training is an effective and desirable way to alleviate this dependence on extensive annotated data. In this work, we present BEV-MAE, an efficient masked autoencoder pre-training framework for LiDAR-based 3D object detection in autonomous driving. Specifically, we propose a bird's eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation in a BEV perspective and avoid complex decoder design during pre-training. Furthermore, we introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder with fine-tuning for masked point cloud inputs. Based on the property of outdoor point clouds in autonomous driving scenarios, i.e., the point clouds of distant objects are more sparse, we propose point density prediction to enable the 3D encoder to learn location information, which is essential for object detection. Experimental results show that BEV-MAE surpasses prior state-of-the-art self-supervised methods and achieves a favorably pre-training efficiency. Furthermore, based on TransFusion-L, BEV-MAE achieves new state-of-the-art LiDAR-based 3D object detection results, with 73.6 NDS and 69.6 mAP on the nuScenes benchmark. The source code will be released at https://github.com/VDIGPKU/BEV-MAE.
更多
查看译文
关键词
CV: Vision for Robotics & Autonomous Driving,ML: Unsupervised & Self-Supervised Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要