Investigation on Low-Frequency and Broadband Sound Absorption of the Compact Anechoic Coating Considering Hydrostatic Pressure

Xinsheng Fang, Xiao Pan, Xiaowei Zhang, Dongsheng Li,Xuewen Yin,Yabin Jin,Weibo Wang,Wenwei Wu

Journal of Marine Science and Engineering(2024)

引用 0|浏览0
暂无评分
摘要
The anechoic coating capable of absorbing sound energy in low frequencies within broadband is essential to conceal underwater vehicles. However, the geometric deformation and modification of mechanical parameters under hydrostatic pressure affect the prediction of absorption performance in deep water environments. An anechoic coating embedded with tandem resonant voids is proposed in this work to achieve quasi-perfect low-frequency and broadband absorption. The analytical method based on the effective medium approach and numerical simulation are performed to estimate the effects of hydrostatic pressure on sound absorption. When additionally considering the dynamic mechanical parameters of the compressed viscoelastic medium, the original absorption humps in low frequencies are inclined to higher band, accompanied by the expanded absorption bandwidth. Then, the tandem coating specimen is measured in a water-filled impedance tube. The experimental spectra are consistent with the analytical and numerical results under various hydrostatic pressures, demonstrating the efficient absorption (α > 0.7) in broadband low frequencies via ordinary pressure. At the same time, the absorption spectrum under higher hydrostatic pressures is also verified in the tube. Consequently, this work paves the way for a broadband low-frequency underwater absorber design and provides an efficient method to characterize the low-frequency and broadband absorption from the coupled resonant coatings in deep water environments.
更多
查看译文
关键词
anechoic coating,low-frequency and broadband sound absorption,hydrostatic pressure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要