Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.

Methods in molecular biology (Clifton, N.J.)(2024)

引用 0|浏览0
暂无评分
摘要
The vast number of unknown phage-encoded ORFan genes and limited insights into the genome organization of phages illustrate the need for efficient genome engineering tools to study bacteriophage genes in their natural context. In addition, there is an application-driven desire to alter phage properties, which is hampered by time constraints for phage genome engineering in the bacterial host. We here describe an optimized CRISPR-Cas3 system in Pseudomonas for straightforward editing of the genome of virulent bacteriophages. The two-vector system combines a broad host range CRISPR-Cas3 targeting plasmid with a SEVA plasmid for homologous directed repair, which enables the creation of clean deletions, insertions, or substitutions in the phage genome within a week. After creating the two plasmids separately, a co-transformation to P. aeruginosa cells is performed. A subsequent infection with the targeted phage allows the CRISPR-Cas3 system to cut the DNA specifically and facilitate or select for homologous recombination. This system has also been successfully applied for P. aeruginosa and Pseudomonas putida genome engineering. The method is straightforward, efficient, and universal, enabling to extrapolate the system to other phage-host pairs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要