LncRNA lncMGR regulates skeletal muscle development and regeneration by recruiting CDK9 and sponging miRNAs

International Journal of Biological Macromolecules(2024)

引用 0|浏览4
暂无评分
摘要
Long non-coding RNAs (lncRNAs) play an essential role in vertebrate myogenesis and muscle diseases. However, the dynamic expression patterns, biological functions, and mechanisms of lncRNAs in skeletal muscle development and regeneration remain largely unknown. In this study, a novel lncRNA (named lncMGR) was differentially expressed during breast muscle development in fast- and slow-growing chickens. Functionally, lncMGR promoted myoblast differentiation, inhibited myoblast proliferation in vitro, and promoted myofiber hypertrophy and injury repair in vivo. Mechanistically, lncMGR increased the mRNA and protein expression of skeletal muscle myosin heavy chain 1 A (MYH1A) via both transcriptional and post-transcriptional regulation. Nuclear lncMGR recruited cyclin-dependent kinase 9 (CDK9) to the core transcriptional activation region of the MYH1A gene to activate MYH1A transcription. Cytoplasmic lncMGR served as a competitive endogenous RNA (ceRNA) to competitively absorb miR-2131-5p away from MYH1A and subsequently protected the MYH1A from miR-2131-5p-mediated degradation. Besides miR-2131-5p, cytoplasmic lncMGR could also sponge miR-143-3p to reconcile the antagonist between the miR-2131-5p/MYH1A-mediated inhibition effects and miR-143-3p-mediated promotion effects on myoblast proliferation, thereby inhibiting myoblast proliferation. Collectively, lncMGR could recruit CDK9 and sponge multiple miRNAs to regulate skeletal muscle development and regeneration, and could be a therapeutic target for muscle diseases.
更多
查看译文
关键词
lncMGR,CDK9,MYH1A,ceRNA,Myogenesis,Muscle regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要