Evolution Behavior of Shear Band in Al-0.5Mg-0.4Si-0.1Cu Alloy during Hot Compression Process

Jiangbo Wang, Jian Ding, Hui Yi,Wei Xin, Jiahang Dai,Yao Wang,Xingchuan Xia

ADVANCED ENGINEERING MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
To clarify the evolution behavior of shear bands in Al-0.5Mg-0.4Si-0.1Cu alloy under high-temperature conditions, isothermal compression tests are carried out under 400, 450, and 500 degrees C with 50% compression at a strain rate of 1 s-1. Through electron backscattered diffraction (EBSD), Schmid factors are mainly distributed between 0.395 and 0.495, making lattices easy to rotate and shear bands formed. The shear band, a local plastic deformation structure, has a significant impact on the dynamic recrystallization and preferred orientation of grains. Through the recrystallization distribution maps, subgrains absorb a large amount of dislocations, which increases the grains' orientation difference, resulting in the formation of recrystallized grains with high-angle grain boundaries. In addition, bulging grain boundaries promote the formation of new nuclei. The newly formed nuclei will generate and grow by absorption of dislocations, which is the feature of discontinuous dynamic recrystallization. These two phenomena are further confirmed by transmission electron microscope tests. Finally, R-Cube textures mainly form in shear bands at 400 degrees C, while in the matrix, E-textures mainly form at 400 and 450 degrees C, and R-Goss textures are rotated to form at 500 degrees C, which is confirmed by EBSD test results. The evolution of shear band formation and its internal dynamic recrystallization behavior in Al-0.5Mg-0.4Si-0.1Cu at different deformation temperatures are investigated in detail. In addition, the relationship between dislocations, texture, and dynamic recrystallization is discussed. Finally, the appropriate hot deformation process parameters to ensure the formability and usability of Al-0.5Mg-0.4Si-0.1Cu are 450 degrees C and 1 s-1.image (c) 2024 WILEY-VCH GmbH
更多
查看译文
关键词
Al-0.5Mg-0.4Si-0.1Cu alloys,dynamic recrystallization,shear bands,texture evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要