Solvent-Free Silsesquioxane Self-Welding for 3D Printing Multi-Refractive Index Glass Objects

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
The growing interest in 3D printing of silica glass has spurred substantial research efforts. Our prior work utilizing a liquid silica resin (LSR) demonstrated high printing accuracy and resolution. However, the resin's sensitivity to moisture posed limitations, restricting the printing environment. On the other hand, polyhedral oligomeric silsesquioxane (POSS)-based materials offer excellent water stability and sinterless features. Yet, they suffer from relatively high shrinkage due to the presence of additional organic monomers. In this study, we present a polymeric silsesquioxane (PSQ) resin with reduced shrinkage, enhanced moisture stability, and the retention of sinterless features, providing a promising solution for achieving high-resolution 3D printing of glass objects. Leveraging the two-photon polymerization (2PP) method, we realized nanostructures with feature sizes below 80 nm. Moreover, we demonstrate the tunability of the refractive index by incorporating zirconium moieties into the resin, facilitating the fabrication of glass micro-optics with varying refractive indices. Importantly, the self-welding capability observed between two individual components provides a flexible approach for producing micro-optics with multiple components, each possessing distinct refractive indices. This research represents a significant advancement in the field of advanced glass manufacturing, paving the way for future applications in micro- and nano-scale glass objects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要