Prioritizing disease-related rare variants by integrating gene expression data.

Hanmin Guo, Alexander Eckehart Urban,Wing Hung Wong

bioRxiv : the preprint server for biology(2024)

引用 0|浏览0
暂无评分
摘要
Rare variants, comprising a vast majority of human genetic variations, are likely to have more deleterious impact on human diseases compared to common variants. Here we present carrier statistic, a statistical framework to prioritize disease-related rare variants by integrating gene expression data. By quantifying the impact of rare variants on gene expression, carrier statistic can prioritize those rare variants that have large functional consequence in the diseased patients. Through simulation studies and analyzing real multi-omics dataset, we demonstrated that carrier statistic is applicable in studies with limited sample size (a few hundreds) and achieves substantially higher sensitivity than existing rare variants association methods. Application to Alzheimer's disease reveals 16 rare variants within 15 genes with extreme carrier statistics. The carrier statistic method can be applied to various rare variant types and is adaptable to other omics data modalities, offering a powerful tool for investigating the molecular mechanisms underlying complex diseases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要