Construction of an Escherichia coli chassis for efficient biosynthesis of human-like N-linked glycoproteins

Zixin Bao, Yuting Gao,Yitong Song,Ning Ding, Wei Li,Qiong Wu, Xiaomei Zhang,Yang Zheng, Junming Li,Xuejun Hu

FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-beta-1,4-GlcNAc-beta-1,3-Gal-beta-1,3-GlcNAc-, containing the human glycoform Gal-beta-1,4-GlcNAc-beta-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal alpha-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (alpha-2,3/alpha-2,6/alpha-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.
更多
查看译文
关键词
Escherichia coli chassis,N-glycosylation,glycoprotein,sialylation,sialic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要