Selenium Nanoparticles Synthesized and Stabilized by Fungal Extract Exhibit Enhanced Bioactivity

Journal of Cluster Science(2024)

引用 0|浏览0
暂无评分
摘要
Selenium has many beneficial bioactive properties yet has a narrow therapeutic window. This problem can be addressed by selenium in nanoform or selenium nanoparticles (SeNPs). There are several chemical and physical approaches that can be employed for the synthesis of SeNPs. However, the biological route for SeNP synthesis is known to be more eco-friendly, economical, and biocompatible when assessing bioactivities. The present study demonstrates a biological approach that effectively facilitates the synthesis and stabilization of SeNPs with the help of secondary metabolites derived from endophytic fungi N. guilinensis i.e., NL(C)-SeNPs. The nanoparticles formed were characterized via various techniques i.e., UV-visible spectroscopy, FTIR, DLS, and TEM. The synthesized NL(C)-SeNPs were spherical with a size of 55 ± 7.0 nm. These capped SeNPs (NL(C)-SeNPs) show prominent bioactivity in terms of in-vitro anti-oxidant properties and anti-microbial activity on Escherichia coli, Enterobacter faecalis, and Staphylococcus aureus and antifungal activity on Aspergillus niger and Fusarium laterium. The results indicated NL(C)-SeNPs portray increased potential anti-oxidant and anti-microbial activity in a dose-dependent manner. Furthermore, their anti-cancer activity on the HepG2 cell line was also observed in a dose-dependent manner. However, additional studies related to the toxicity and synergistic effects of SeNPs, are required before their therapeutic applications
更多
查看译文
关键词
Selenium nanoparticles,Characterization,Bioactivity,Concomitant synthesis,Endophytic fungi,Biocompatibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要