Theranostics of Thyroid Cancer

Seminars in Nuclear Medicine(2024)

引用 0|浏览1
暂无评分
摘要
Molecular imaging is pivotal in evaluating and managing patients with different thyroid cancer histotypes. The existing, pathology-based, risk stratification systems can be usefully refined, by incorporating tumor-specific molecular and molecular imaging biomarkers with theranostic value, allowing patient-specific treatment decisions. Molecular imaging with different radioactive iodine isotopes (ie, I131, I123, I124) is a central component of differentiated carcinoma (DTC)'s risk stratification while [18F]F-fluorodeoxyglucose ([18F]FDG) PET/CT is interrogated about disease aggressiveness and presence of distant metastases. Moreover, it is particularly useful to assess and risk-stratify patients with radioiodine-refractory DTC, poorly differentiated, and anaplastic thyroid cancers. [18F]F-dihydroxyphenylalanine (6-[18F]FDOPA) PET/CT is the most specific and accurate molecular imaging procedure for patients with medullary thyroid cancer (MTC), a neuroendocrine tumor derived from thyroid C-cells. In addition, [18F]FDG PET/CT can be used in patients with more aggressive clinical or biochemical (ie, serum markers levels and kinetics) MTC phenotypes. In addition to conventional radioiodine therapy for DTC, new redifferentiation strategies are now available to restore uptake in radioiodine-refractory DTC. Moreover, peptide receptor theranostics showed promising results in patients with advanced and metastatic radioiodine-refractory DTC and MTC, respectively. The current appropriate role and future perspectives of molecular imaging and theranostics in thyroid cancer are discussed in our present review.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要