Internal Strain Measurement by Neutron Diffraction Under Transverse Compressive Stress for Nb3Sn Wires With and Without Cu-Nb Reinforcement

Mio Nakamoto, Michinaka Sugano, Toru Ogitsu,Masahiro Sugimoto,Ryo Taniguchi, Kiyoshige Hirose,Takuro Kawasaki, Wu Gon,Stefanus Harjo,Satoshi Awaji,Hidetoshi Oguro

IEEE Transactions on Applied Superconductivity(2024)

引用 0|浏览1
暂无评分
摘要
For an accelerator magnet, a certain mechanical strength is required to sustain against a transverse compression stress due to Lorentz force. A bronze-route Nb 3 Sn wire with Cu-Nb reinforcement was developed by Tohoku University and Furukawa Electric to enhance the strength against axial tension. The Cu-Nb reinforcement wire also exhibited some indication of strength improvement against transverse compression; however, the details of a reinforcement mechanism for the transverse compression stress have not been clarified. In this study, the internal strains of Nb 3 Sn bronze-route wires with and without the Cu-Nb reinforcement under transverse compression stress were evaluated by neutron diffraction at BL19 (TAKUMI) in J-PARC. The samples were attached to jig with solder only at the ends and compression was applied at the center of the samples with 30-mm anvil with 5-mm wide and 8- to 15-mm high beam. Since a critical current, Ic of a superconducting wire depends on the three-dimensional strain, internal strain of Nb 3 Sn along the axial and two orthogonal radial directions were evaluated at room temperature (RT). In the different setup, Ic measurements of the wires under transverse compression stresses were also performed at 4.2 K and 14.5 T. Using 3-mm wide anvil, the transverse compression was applied at 4.2 K or RT. The neutron diffraction results indicated no significant differences in the internal strains of Nb 3 Sn under transverse compression between the samples with and without Cu-Nb reinforcement, while the Ic measurements showed potential increase in the irreversible stress ( σirr ) for Cu-Nb reinforced wires. The reason for this discrepancy was discussed based on the difference in the experimental setups for each measurement.
更多
查看译文
关键词
Bronze-route wire,critical current,internal strain,neutron diffraction,Nb3Sn
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要