Historical and dispersal processes drive community assembly of multiple aquatic taxa in glacierized catchments in the Qinghai-Tibet plateau

Environmental Research(2024)

引用 0|浏览1
暂无评分
摘要
Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.e., phytoplankton, epiphytic algae, zooplankton, macroinvertebrates, and fishes) in rivers in the Qinghai-Tibet Plateau, the World's Third Pole. We tested whether organismal groups with contrasting body sizes differed in their assembly processes, and discussed their applicability in bioassessment in alpine zones. We found that community structure of alpine river biotas was always predominantly explained in terms of dispersal dynamics and historical biogeography. These patterns are most likely the result of differences in species-specific functional attributes, the stochastic colonization-extinction dynamics driven by multi-year glacier disturbances and the repeated hydrodynamic separation among alpine catchments after the rising of the Qilian mountains. Additionally, we found that the strength of dispersal dynamics and niche constraints was partially mediated by organismal body sizes, with dispersal processes being more influential for microscopic primary producers. Finding that zooplankton and macroinvertebrate communities followed clumped species replacement structures (i.e., Clementsian gradients) supports the notion that environmental filtering also contributes to the structure of high-altitude animal communities in glacierized catchments. In terms of the applied fields, we argue that freshwater bioassessment in glacierized catchments may benefit from incorporating the metacommunity perspective and applying novel approaches to (i) detect the optimal spatial scale for species sorting and (ii) identify and eliminate the species that are sensitive to dispersal-related processes.
更多
查看译文
关键词
Community assembly,Glacierized catchments,Qinghai-tibet plateau,Dispersal dynamics,Historical biogeography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要